Spring MVC

Spring Boot

» CoC (Convention Over Configuration)

Spring Initializr

Generate a waenroe | With Spring Boot 12 ~

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
COm.cours.spring Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies
Name
app-boot
Description

Demo project for Spring Boot

Package Hame Télécharger et importer le
com.cours.spring proj et dans STS

Packaging

Java Version

Language

Java

Too many options? Switch back to the simple version.
Generate Project alt + ¢

Structure du projet

W 28 cours-boot [boot] [devtools] D i Hierarchy
w [src/main/java
3 f# com.cours.spring > @ spring-boot-starter-data-jpa : 1.4.2.RELEASE [compile]
f# com.cours.spring.controller 5 () spring-boot-starter-security : 1.4.2.RELEASE [compile]
f# com.cours.spring.model 5 () spring-boot-starter-thymeleaf : 1.4.2.RELEASE [compile]
>
>

() spring-boot-starter-web : 1.4.2.RELEASE [compile]
f# com.cours.spring.service) spring-boot-devtools: 1.4.2.RELEASE [runtime]
w [src/main/resources {3 mysgl-connector-java: 5.1.40 [runtime]
(= static {J spring-boot-starter-test : 1.4.2.RELEASE [test]
= templates
47 application.properties
3 [sreftest/java
% Bk JRE System Library [JavaSE-1.8]
» B Maven Dependencies
% = src
= target
VI
mwnw.cmd
[porm.xml
b = Servers

>
>
3 f# com.cours.spring.repository
>

S

Les classes et interfaces

model:La classe Ressource

package com.cours.spring.model;
#®import javax.persistence.Entity;

@Entity
public class Ressource {

=] @Id @GeneratedValus(strategy=GenerationType.AUTO)
private long id;
private String nom;

=] public long getId() {
return id;

1
= public void setId(long] id) {
this.id = id;
1

=] public String getNom() {
return nom;

=] public void setNom(String nom) {
this.nom = nom;
1

Repository: RepositoryRessource

package com.cours.spring.repository;
@ import org.springframework.data.jpa.repository.JpaRepository;

[@Repository("resscurceRepository™)

}

ruhlic interface RessourceRepository extends JpaRepository<Ressource,longy {

=]

Service: RessourceService

package com.cours.spring.service;
@ import java.util.Llist;
public interface RessourceService {

void ajouterRessourcemﬁessource rb;
List<Ressource> getRessources();

}
Service: RessourceServicelmpl

package com.cours.spring.service;

import java.util.list;[]

@service("ressourceService™)
public class RessourceServiceImpl implements RessourceService {

@Autowired
private RessourceRepository ressourceRepository;

public woid ajouterRessource(Ressource ressource) {

ressourceRepository. save(ressource);

h
@override

public List<Ressource> getRessources() {

return ressourceRepository.findAlL();

Le controleur

package com.cours.spring.controller;
import org.springframework.beans.factory.annotation.Autowired;[]

: @Controller
public class HomeController {
=] @autowired
private RessourceService ressourceService;

=] [IRequestMapping(name = "/add", method = RegquestMethod.GET)
[IResponseBody
public void ajouter(@RequestParam String n) m
Ressource r = new Ressource();
r.setMom(n);
resscurceService.ajouterRessource(r);

Configuration de la source de données
et Hibernate

" spring.datasource.url = jdbc:mysql://localhest:3386/ressources
spring.datascurce.username = root
spring.datasource.password = root
spring.jpa.hibernate.ddl-autc = update
spring.jpa.properties.hibernate.dialect = org.hibernate.dialect.MySQL5Dialect

SPRING MVC

» DispatcherServlet: Front Controller, c’est
Handler Mapping IIvtlavpé:oint d’entrée d’une application web

» HandlerMapping gere les associations
entre les urls et les controleurs.

Request

Request

» La méthode avec le @RequestMapping
Controller qui correspond a I’url est appelée.

» La méthode appelée doit définir le
modeéle et sélectionner une vue.

» DispatcherServlet Interroge I’interface
ViewResolver pour trouver
I’mplémentation qui correspond a la
vue.

View Resolver

» Par exemple pour thymeleaf, si le nom
de la vue est « index », alors
DispatcherServlet recherche dans le
dossier templates la page index.html.

Iyiyly!

Response

Controleur

‘import org.springframework.stereotype.Controller;[]

@Controller
public class ResscurceController {

[iRequestMapping(value = ['/", method = RequestMethod.GET)
@ResponseBody

public String ressource() {
return "000";

b

» Arguments supporteés par I’action

» @RequestParam(value="pl« ,defa
ultvalue="v1",value="vl«)

» @ModelAttribute: lier un
argument a un objet du modéle

» @CookieValue: récupérer une
variable de type Cookie

» @PathVariable

» Un controleur doit étre annoté par
@Controller

» @RequestMapping: Définit la
correspondance entre le contrdleur ou
une action du contrdleur et une url.

» Attributs de @RequestParam
» value:url
» method: post,get,delete,put,head

» params: sélection de la méthode selon
I”’existence ou non de parametres (
valeurs possibles, pl=vl ou p1!=v1 ou
Ipl

» Types de retour supportés:

» ModelAndView: contient le modéle et le nom
de la vue a afficher.

Model
View

String : nom de la vue

» Exemple @PathVariable

@rRequestMapping({value = "/chemin/{v1}")
public String action(j@Pathvariable("vi"} long varl) {

» ModelAndView

public ModelAndview action() [

f/0n associe la wue & modelAndvView
ModelAndview modelAndview = new ModelAndView(“redirect:/ressources/list™);

//0n associe le modale
modelAndView. addObject("nomObjet™, ressourceService.getRessources());

return modelAndview;

i

» Action(@ModelAttribute Ressource ressource): si ressource existe dans le
modele, alors il sera récupére sinon il sera instancié et ajouté dans le

modeéle.

Thymeleaf

» Moteur de vue réalisé en 2014
» Ecrit en Java et supporte XML/XHTML/HTML5

» Afficher du texte: <p th:text="'Hello, ' + ${name} + 'I'" />

» Une boucle: <1li th:each="ressource : ${ressources}“
th:text="${ressource.nom}"/>

La sécurité

Spring Spring Security supporte deux modes d’authentification:
» Authentification HTTP

Authentification par formulaire

LDAP

JAAS

Java open SSO

Authentification OpenlID

OAuth

vV v v v v Y

Intégration de la sécurité dans
I’application

1. Ajouter la dépendance
<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-security</artifactId>

</dependency>
2. Configuration de la sécurité par formulaire

Ajouter une classe de configuration dans un sous package config

[@Configuration
[@EnableWebSecurity
public class SecuriteConfig extends WebSecurityConfigurerfAdapter {

\@Override On peut aussi configure les autorisations par url et pa
protected void configure(HttpSecurity http) throws Exception { on peut ajouter les lignes suivantes juste aprés .auhto

http.authorizeRequests() Iy PTOTTNT] o]
\anyRequest () .antMatchers(HttpMethod.GET, , "images/**","/css/

.authenticated() //toutes les regquétes deivent Etre authentifides . antMatcher‘s(HttpMethod .POST, "/images ") .hasRoLe("USER
Land()

.formLogin() //authentification avec fermulaire

permitALL(); /7 1s formilaice de login doit Atre accessible 3 fout 1o monde

On peut configurer dans la méme méthode I’url de destination apres déconnexion

En ajoutant:

.logout()
.logoutSuccessurl("/");

3. Comptes utilisateurs

» Dans la mémoire:

@Autowired

public void configureInMemoryUsers(AuthenticationManagerBuilder auth) throws Exception{
auth.inMemoryAuthentication()

.withUser("ul").password("pl").roles("ADMIN", "USER")

.and()

.withUser("u2").password("p2").roles("USER")

.and()

.withUser("u3").password("p3").roles("USER").disabled(true)

.and()

.withUser("u4").password("p4").role ("USER"%jgfco ntLocked(true); . L

y » Ou blen dans’ la base onnees, mais au préalable, il faut déja créer
les classes et interfaces User UserRepository,UserService et

UserServiceImpl

@Autowired

UserService userService;

Y @Autowired|
public wvoid configurelpaBasedUsers({AuthenticationManagerBuilder auth)} throws Exception{

guth.userDetailsService (userService);

-

Intégration thymeleaf avec spring security

4. Ajouter la dépendance
<dependency>

<groupId>org.thymeleaf.extras</groupId>

<artifactId>thymeleaf-extras-springsecurity4</artifactId>

</dependency>

5. Intégration de la sécurité dans les pages thymeleaf

» Ajouter le namespace

xmlns:sec="http:/ Swaw. thymeleaf.org/thymeleaf-extras-springsecurityd™

» exemples d’attributs:
<form method="pest” th:action="@{logout}">

<input type="submit" wvalue="Leg off"/>
</form>

6. la classe User 7. L’interface UserRepository

@Entity
public class User { \ - . -
3 @#1d @Generatedvalue [IRepository("userRepository™)
private long id; public interface UserRepository extends CrudRepository<User, Long:> {
private String username;
private String password; User findByUsername(S5tring username);
private String[] roles; J
E public long getId() {
return id;

E] imncWMSumumgm){ 8. L?interface UserService

this.id = id;

2 public String getUsername() {
return username; public interface UserService extends UserDetailsService{

e public void setUsername(String username) { | UserDetails loadUserByUsername({String username) ;
this.username = username; }

2 public String getPassword() {
return password;

2 public void setPassword(String password) {
this.password = password;

3
2 public String[] getRoles() {

return roles; 9. La classe UserServiceImpl

public void setRoles(String[] roles) { . " . "
this.roles = roles; @Service("userService")

}

public class UserServiceImpl implements UserService {
private User(}{
i [@Autowired
} private UserRepository userRepository;
¥ @override
public UserDetails loadUserByUsername(String username) throws UsernameNotFoundException {
this.username = username; User user=userRepositery.findByUsername(username);
this.password = password; return new org.springframework.security.core.userdetails.User(username,user.getPassword(),
this.roles = roles; Stream.eof(user.getRoles()) //Retourne un objet stream de String |
.map(simpleGrantedAuthority::new) //Transforme le flux de type SimpleGranredAuthority
.collect{Collectors.tolist(})); //retourne une collection de type List

public User(String username, String password, String... roles) [

.map(SimpleGrantedAuthority: :new) est éqauivalente a .map(role-> new SimpleGrantedAuthority(role))

L’ Interfaction Authentication

» L’interfaction Authentication contient les informations de I’utilisateur
courant.

» Pour obtenir I’objet Authentication dans le code:
SecurityContextHolder.getContext().getAuthentication();

String username=SecurityContextHolder.getContext().getAuthentication().getName();

CommandRunner

@Bean

@Autowired

CommandLineRunner setUp(UserRepository userRepository){
return (args)->{

if (userRepository.count()<1)

userRepository.save(new User("ul", "p1", "ADMIN","USER"));
userRepository.save(new User("u2", "p2", "USER"));
userRepository.save(new User("u3", "p3", "USER"));
userRepository.save(new User("u4", "p4", "USER"));

5

}

}

Stream

Un stream (java.util.stream.Stream) supporte deux types d'opérations: les opérations intermédiaires et les opérations terminales

les opérations intermédiaires s'effectuent de fagon lazy et renvoient un nouveau stream,(ex map et filter) , tant qu'aucune opération
terminale n'aura été appelée sur un stream pipeline, les opérations intermédiaires ne seront pas réellement effectuées

uand une opération terminale sera appelée (Stream.reduce ou Stream.collect), alors toutes les opérations intermédiaires seront
effectuées, puis I'opération terminale ajoutée (les streams seront dits consommeés, ils seront détruits et ne pourront plus étre utilisés)

Création d'un stream

appel de la méthode stream ou parallelStream sur une collection, mais un nombre de méthodes ont été ajoutées aux classes existantes:
String.chars() renvoie un IntStream, BufferedReader.lines(), Random.ints()

Il existe aussi des méthodes statiques dans la classe Stream:
- Stream.iterate(1,x->x*2) construit une suite de puissance de 2 a partir de 1.
-Stream.of

Les opérations intermédiaires

Elles peuvent étre statefull ou stateless
- Les opérations stateless s'effectuent sur les éléments du stream un a un sans prendre en compte les autres éléments du flux

- Les opérations statefull ont besoin de connaitre généralement I'ensemble du stream pour donner un résultat (distinct, sorted)

Les opérations terminales

Il existe deux types de réductions dans I'API les réductions simples(sum, max,count) et les réductions mutables

