
Spring MVC

Spring Boot

 CoC (Convention Over Configuration)

Spring Initializr

Télécharger et importer le
projet dans STS

Structure du projet

Les classes et interfaces
model:La classe Ressource

Repository: RepositoryRessource

Service: RessourceService

Service: RessourceServiceImpl

Le contrôleur

Configuration de la source de données
et Hibernate

SPRING MVC

 DispatcherServlet: Front Controller, c’est
le point d’entrée d’une application web
MVC.

 HandlerMapping gère les associations
entre les urls et les contrôleurs.

 La méthode avec le @RequestMapping
qui correspond à l’url est appelée.

 La méthode appelée doit définir le
modèle et sélectionner une vue.

 DispatcherServlet Interroge l’interface
ViewResolver pour trouver
l’mplémentation qui correspond à la
vue.

 Par exemple pour thymeleaf, si le nom
de la vue est « index », alors
DispatcherServlet recherche dans le
dossier templates la page index.html.

Contrôleur
 Un contrôleur doit être annoté par

@Controller

 @RequestMapping: Définit la
correspondance entre le contrôleur ou
une action du contrôleur et une url.

 Attributs de @RequestParam

 value:url

 method: post,get,delete,put,head

 params: sélection de la méthode selon
l’existence ou non de paramètres (
valeurs possibles, p1=v1 ou p1!=v1 ou
!p1 Arguments supportés par l’action

 @RequestParam(value="p1« ,defa
ultvalue="v1",value="v1«)

 @ModelAttribute: lier un
argument à un objet du modèle

 @CookieValue: récupérer une
variable de type Cookie

 @PathVariable

 Types de retour supportés:
 ModelAndView: contient le modèle et le nom

de la vue à afficher.

 Model

 View

 String : nom de la vue

 Exemple @PathVariable

 ModelAndView

 Action(@ModelAttribute Ressource ressource): si ressource existe dans le
modèle, alors il sera récupéré sinon il sera instancié et ajouté dans le
modèle.

Thymeleaf

 Moteur de vue réalisé en 2014

 Écrit en Java et supporte XML/XHTML/HTML5

 Afficher du texte: <p th:text="'Hello, ' + ${name} + '!'" />

 Une boucle: <li th:each="ressource : ${ressources}“
th:text="${ressource.nom}"/>

La sécurité
Spring Spring Security supporte deux modes d’authentification:

 Authentification HTTP

 Authentification par formulaire

 LDAP

 JAAS

 Java open SSO

 Authentification OpenID

 OAuth

Intégration de la sécurité dans
l’application

1. Ajouter la dépendance
<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring‐boot‐starter‐security</artifactId>

</dependency>

2. Configuration de la sécurité par formulaire

Ajouter une classe de configuration dans un sous package config

On peut aussi configure les autorisations par url et par méthode http, exemple:
on peut ajouter les lignes suivantes juste après .auhtoriseRequests():

.antMatchers(HttpMethod.GET,"/","images/**","/css/**","/Webjars/**").permitAll()

.antMatchers(HttpMethod.POST,"/images").hasRole("USER")

On peut configurer dans la même méthode l’url de destination après déconnexion

En ajoutant:

.logout()

.logoutSuccessUrl("/");

3. Comptes utilisateurs

 Dans la mémoire:
@Autowired
public void configureInMemoryUsers(AuthenticationManagerBuilder auth) throws Exception{
auth.inMemoryAuthentication()
.withUser("u1").password("p1").roles("ADMIN","USER")
.and()
.withUser("u2").password("p2").roles("USER")
.and()
.withUser("u3").password("p3").roles("USER").disabled(true)
.and()
.withUser("u4").password("p4").roles("USER").accountLocked(true);
}  Ou bien dans la base de données, mais au préalable, il faut déjà créer

les classes et interfaces User UserRepository,UserService et
UserServiceImpl
@Autowired

UserService userService;

Intégration thymeleaf avec spring security

4. Ajouter la dépendance

<dependency>

<groupId>org.thymeleaf.extras</groupId>

<artifactId>thymeleaf‐extras‐springsecurity4</artifactId>

</dependency>

5. Intégration de la sécurité dans les pages thymeleaf

 Ajouter le namespace

 exemples d’attributs:

6. la classe User 7. L’interface UserRepository

8. L’interface UserService

9. La classe UserServiceImpl

@Service("userService")

.map(SimpleGrantedAuthority::new) est éqauivalente à .map(role‐> new SimpleGrantedAuthority(role))

L’interfaction Authentication

 L’interfaction Authentication contient les informations de l’utilisateur
courant.

 Pour obtenir l’objet Authentication dans le code:

SecurityContextHolder.getContext().getAuthentication();

String username=SecurityContextHolder.getContext().getAuthentication().getName();

CommandRunner
@Bean
@Autowired
CommandLineRunner setUp(UserRepository userRepository){
return (args)‐>{
if (userRepository.count()<1)
userRepository.save(new User("u1", "p1", "ADMIN","USER"));
userRepository.save(new User("u2", "p2", "USER"));
userRepository.save(new User("u3", "p3", "USER"));
userRepository.save(new User("u4", "p4", "USER"));
};
}
}

Stream
Un stream (java.util.stream.Stream) supporte deux types d'opérations: les opérations intermédiaires et les opérations terminales

les opérations intermédiaires s'effectuent de façon lazy et renvoient un nouveau stream,(ex map et filter) , tant qu'aucune opération

terminale n'aura été appelée sur un stream pipeline, les opérations intermédiaires ne seront pas réellement effectuées

quand une opération terminale sera appelée (Stream.reduce ou Stream.collect), alors toutes les opérations intermédiaires seront
effectuées, puis l'opération terminale ajoutée (les streams seront dits consommés, ils seront détruits et ne pourront plus être utilisés)

Création d'un stream

appel de la méthode stream ou parallelStream sur une collection, mais un nombre de méthodes ont été ajoutées aux classes existantes:
String.chars() renvoie un IntStream, BufferedReader.lines(), Random.ints()

Il existe aussi des méthodes statiques dans la classe Stream:

- Stream.iterate(1,x->x*2) construit une suite de puissance de 2 à partir de 1.

-Stream.of

Les opérations intermédiaires

Elles peuvent être statefull ou stateless

- Les opérations stateless s'effectuent sur les éléments du stream un à un sans prendre en compte les autres éléments du flux

- Les opérations statefull ont besoin de connaitre généralement l'ensemble du stream pour donner un résultat (distinct, sorted)

Les opérations terminales

Il existe deux types de réductions dans l'API les réductions simples(sum, max,count) et les réductions mutables

