fl M

ASP.NET MVC

ASP.NET MVC

Créer une application ASP.Net
Creer un projet Application Web ASPNET MVC 4 (ou 3)

L es controleurs
Role

Le controleur regoit les requétes du client
Prepare le modele de donnees pour la vue.

Seélectionne et envoie la vue adéquate au client.
Un controleur hérite de la classe Controller.

[.e nom de la classe du controleur doit se terminer par le

suffixe « Controller ».

Les Vues

Une vue est un fichier template utilise par le moteur

ASP.NET MVC pour générer dynamiquement la reponse
HTML

/

Atelier

1- Créer un projet Application web
ASP.NET MVC 4

2- Créer un controleur
(Exemple1Controller, Modele: Controleur

MVC vide)

Un nouveau fichier nomme
Exemple1Controller.cs est cree dans
dossier « Controllers » qui contient

la classe Exemple1Controller

Ajouter un controleur

Mom du contréleur :
Exemplel Controller
Options de vue de structure
Modeéle :
Contraleur MVC vide

Aucun

Ajouter] ’ Annuler

4 Controllers

I AccountController.cs
B Exemnplel Controller.cs
I HomeController.cs

Ajouter la méthode suivante dans le
controleur:

public string Message()

{

return
"<h1>Bonjour</h1>";

public class ExemplelController
Controller

// GET: /Exemplel/

public ActionResult Index()
{

}

return View();

j

Modifier la méthode (action) comme suit:

public string Index()
{

return "<h1>Action par défaut</h1>";

;

Tester Le controleur Exemplel dans le navigateur.

[

(- localhost:1335/Exemplel
Action par defaut

Controleur, I’action par defaut Index est

appelee

R | | http://localhost1.../Exemple

6 localhost1335/Exemnplel /Message

Bonjour

Controleur Action

Mapping par défaut d’une URL ASPNET MVC: /Controleur/Action/Parametres

/

Ajouter les deux actions suivantes :

public string Message?2 (string id)

{

return "<h2>Bonjour " + id +
||</h2>";

6 localhost:1335/Exemplel /Message/ASP.NET MVC

Bonjour ASP.NET MVC

public string Message3(string nom , int
nb)

{

return "<h2>Bonjour " + nom +
"""+ nb + " fois</h2>";

(- localhost:1335/Exemplel /Message3?nom=ASP.NET MYC&inb=3

Bonjour ASP.NET MVC 3 fois

/

3- créer une vue

* Ajouter un contréleur nomme exemple2

vue »

Dans le dossier Views, un nouveau sous
dossier qui porte le nom du controleur

(Exemple?) est cree.

Dans le dossier Exemple2, une vue qui

porte le nom de I’action Index (.cshtml) est

" B VT e

° Cliquer sur I’action Index avec le bouton droit et selectionner la commande « ajouter une

Ajouter une vue

=

MNom de la vue:

Moteur de vue:

|Razor (CSHTML) -

[T] Créer une vue fortement typée

Classe de modéle:

Modéle de vue de structure :

Empty

[T] Créer en tant que vue partielle

Utiliser une disposition ou la page maitre :

MainContent

creee. I Scripts
4 @l Views
b Account
4] Exemple2
[2] Index.cshtml
b Home
4 @l Shared
G0 SR R Exemplel Controller.cs
@{
ViewBag.Title = "Index";
¥
<h2>Index</h2:>

(Ne pas renseigner si I'option est définie dans un fichier Razor _viewstart)

-]

[Ajouter ” Annuler

Ajouter le code suivant dans

la page Index.cshtml

<p>Vue associée a l'action
Index du controleur

Exemple2</p>.

Le contenu du dossier
shared est partagé par

toutes les vues

4 @l Shared
(21 _Layout.cshtml
021 _LoginPartial.cshtml
(2] Error.cshtml

Le contenu des vues est
affiche par
(@RenderBody()

<div id="body">

€ | @ localhost1335/Eremple? e Y- Google

Sinscrire

Index

Vue associée a I'action Index du controleur Exemple2

) 2012 - Mon application ASP.NET MVC

La page _Layout.cshtml est le modele utilise par toutes les

vues.

Supprimer le contenu « - Mon application ASPNET MVC »
de la balise tiltle

<meta charset="utf-8" />
ctitles@ViewBag. Title |/title>

<link href="~/favicon.ico" rel="shortcut i
<meta name="viewport" content="width=devic

fRenderSection("featured”, required: false)
section class="content-wrapper main-content clear-fix">

@RenderBody ()
</sectionz
<fdivs

o)

Se connecter

| ey g

4- Passer des données du controleur vers la vue

Ajouter dans le controleur ExempleZ I’action suivante:

public ActionResult Message3(string
nom, int nb)

dynamique permet de passer des données

a une vue
ViewBag.message = "Bonjour
"+ nom;
ViewBag.nombre = nb;
return View();
}

{

// ViewBag est un objet

o/ \)

Ajouter le code suivant, dans la vue nouvellement creece

(@for (int i=0; i <ViewBagnombre;i++) {
(@ViewBag. message

;

Le modéle

Le modele est constitué de classes POCO (Plain 0ld CLR Objects
Exemple:
public class Photo
{
//Le nom de 1l'identifiant doit étre soit
//ID soit NomClasselD
public int PhotolID { get; set; }
public string Titre { get; set; }
public string Description { get; set; }
public DateTime DateCreation { get; set; }
public string Proprietaire { get; set; }
public byte[] Fichier { get; set; }
//Propriété de navigation
//virtual pour activer le chargement différé (Lazy loading)
public virtual ICollection<Commentaire> Commentaires { get; set; }

Les annotations

Annotations d’affichage et d’édition

[DisplayName("Date de création")]
[DataType(DataType.Date)]

[DisplayFormat(DataFormatString="{0:dd/MM/y
y}",ApplyFormatInEditMode=true)]

public DateTime DateCreation { get;
set; }

Annotations de validation

public class Personne

{

public int PersonnID { get; set; }

[Required(ErrorMessage=“Entrez un nom")]
public string Nom { get; set; }

[Range (15, 40)]
public int Age{ get; set; }

[Required]
[DataType(DataType.EmailAddress)]
public string AdresseEmail{ get; set; }

Ajouter le contexte Entity Framework

Creer une classe qui héerite de DbContexte (System.Data.Entity)
public class PartagePhotoDB:DbContext

{

set; }

public DbSet<Photo> Photos { get;

public DbSet<Commentaire>
Commentaires { get; set; }

¥

Lors de la premiére exécution de l’application EF cherchera une
chaine de connexion nommeée PhotOSharingDB pour creer
la base de données, s’il n’existe pas il génere une connexion

par defaut.

Controleurs

Les actions

Une action est une méthode publique qui retourne un objet de

type ActionResult ou un type derive.

Types deriveés de ActionResult
ViewResult: pour retourner une vue.

PartialViewResult: représente une vue partielle (une partie d’une

page html) qui peut étre utilisee dans plusieurs vues de I"application.
RedirectToRouteResult: redirige le navigateur vers une autre action

RedirectResult:redirection vers une URL dans l’application ou une
URL externe.

ContentResult: retourne des donnees au navigateur au format texte ,
XML, JSON

Le contrOleur Categories avec I'action
Index

public class CategoriesController : Controller
{
//Création du contexte de données
restoEntities db = new restoEntities();
//Action Index
public ActionResult Index()
{ /*Le contrdéleur passe le modele (categories) a

* 1la vue nommée Index.cshtml (nom de 1'action),
stockée dans le dossier views/Categories.

View() retourne un ActionResult de type ViewResult
*/
return View(db.categories.TolList());

//0n peut aussi fournir explicitement le nom de la
vue

return View("Index", db.categories.TolList());

’action Detalls

//int? : type nullable (int + null)
public ActionResult Details(int? ID)

{

if (ID==null)
return HttpNotFound();
// Utiliser une requéte LINQ
/* var cat = (from c in db.Categories
where c.ID == ID
select c).FirstOrDefault();*/
//Utilise la méthode Find qui en parametre
//1la valeur d'une clé primaire
var cat = db.Categories.Find(ID);

if (cat == null)
return HttpNotFound();

return View(cat);

|’action Creer

/* Par défaut [HttpGet] appelée lors de 1’affichage du formulaire*/
public ActionResult Creer()

{

return View(new Categorie());

[HttpPost] /* appelée lors de 1’envoi du formulaire (envoyé par méthode POST)*/
public ActionResult Creer(Categorie cat)
{// On doit tester la validité des données envoyées

if (ModelState.IsValid)

{
db.Categories.Add(cat);
db.SaveChanges();
/* RedirectToAction retourne un ActionResult
* det Type RedirectToRouteResult
*/
return RedirectToAction("Index");
}

return View(cat);

’action Modifier

public ActionResult Modifier(int? ID)
{ if (ID==null)

/* HttpNotFound() retourne un
ActionResult de type HttpNotFoundResult

*/
return HttpNotFound();
var cat = db.Categories.Find(ID);
if (cat null)
return HttpNotFound();
return View(cat);}
[HttpPost]
public ActionResult Modifier(Categorie

c)
{

if (ModelState.IsValid)

{/* Cette linge indique que c est un
objet (une entée)
* existante qui est dans 1l'état
modifié, 1'état est
* défini par la constante
EntityState.Modified

* L'appel a SaveChanges
déclenchera dans ce cas un Update

*/

/* La méthode Entrv (de la classe
DbContext) retourne, une entité

* de tvpe DbEntitvEntrv, attachée
au contexte de données db et on

* modifie 1'état de l'entité a
1'aide de sa propriété State.
*/
db.Entrv(c).State
EntityState.Modified;

db.SaveChanges();

return
RedirectToAction("Index");

}

return View(c);

}

3

'action Supprimer

//Suppression select cc).FirstOrDefault();
public ActionResult Supprimer(int? ID) // Etape 2: suppression de l'entité
{ db.Categories.Remove(categorie);
// Il faut ajouter les tests sur //0u bien nous pouvons aussi
null remplacer les étapes 1 et 2 par:

//db.Entrv(cat).State =

return View(db.Categories.Find(ID));EntityState.Deleted;

}
/* L'attribut ActionName définit le nom db.SaveChanges();
de 1'action, ainsi l'action return RedirectToAction("Index");
* Supprimer est associée a la méthode }
ConfirmerSuppression
*/ Remargue: Il ne faut oublier de mettre a
[HttpPost , ActionName("Supprimer")] jour le nom des actions Creer. Modifier

public ActionResult et Supprimer dans la vue Index

ConfirmerSuppresion(Categorie cat)
{// Il faut ajouter les tests sur null

// Etape 1: recherche de l'entité
cat dans le contexte de données

Categorie categorie = (from cc in
db.Categories

where cc.ID == cat.ID

Actions filles

[’annotation [ChildActionOnly] permet de definir une action
fille qui retourne une partie du contenu d’une vue, une

action fille peut etre appelée dans une vue par le helper
Html. Action()

lLes vues

[.es moteurs de vues
Syntaxe Razor

Les Html Helpers
® Action

* Affichage

* Edition

® Validation

Les moteurs de vue Asp.Net MVC
Razor:depuis la version Asp.Net MVC 3

ASPX: moteur de vue par defaut pour les versions Asp.net

MVC 1 et?

NHaml: version .Net du moteur de vues Haml utilisé par

Ruby On Rails.

Spark:moteur de vue utilise aussi par le framework MonoRail

(un framework base sur Asp.Net et inspire par Ruby On
Rails).

Syntaxe Razor
Le symbole (@ différencie le code C# du code HTML dans une

vuce.

(@(@: affiche le symbole (@

(@: définit une ligne de texte dans le code C#, pour plusicurs
lignes il faut utiliser <text> </text>

(@* commentaire razor *(@

Par defaut Razor encode les chaines de caracteres avant de les
envoyer au navigateur, par exemple si (@Model.Categorie contient
"<p>Salade</p>", alors il remplace les caracteres < et > par
‘<” et ‘>’.

Pour geneérer les chaines sans encodage HTML, il faut utiliser

(@Html.Raw(Model.Categorie)

Exemples

@* Commentaire Razor *@

Prix TTC : @(Model.Prix * 1.2)

@if (Model.Count > 15)
{

@foreach(var item in Model)

@item.Nom</1li>

Lier une vue au modeéele

Une collection d’entités
@model IEnumerable<app3.Models.Categorie>
@foreach (var item in Model) {

<div>

Nom: @item.libelle

</div>

¥

Une entité

* @model app3.Models.Categorie

e Libellé: @Model.libelle

-

o

Les HtmI Helpers
Actions

* (@Html.ActionLink: génere un élément <a>

dHtml.ActionLink("Afficher Détails", "Details"

, new {

Afficher Détails

* (@Html.Action: génére un lien (uniquement la valeur de href dans

le cas de ActionLink)

oHtml.Action("Details", new { id=1 })

Plats/Details/1

Affichage

Html.DisplayNameFor(): affiche la légende definie par
I’annotation [DisplayName]| dans le modele si elle est définie,
sinon ce helper affiche le nom de I’attribut.

@Html.DisplayNameFor(model => model.DateCreation)

Date de création

Html.DisplayFor(): affiche la valeur de la propriete en
prenant en compte eventuellement les annotations definies dans
le modele.

@Html.DisplayFor(model => model.DateCreation)

25/11/2013

Le helper Html.BeginForm()

Html.BeginForm(): géenere I'’élément Html form, les attributs du
formulaire peuvent étre passés en arguments du helper.

dusing/ (Html.BeginForm()) {
/* Champs du formulaire */

<form action="/Categories/Creer" method="post"></form>

dusing (Html.BeginForm("Creer", "Plat", FormMethod.Post,
"multipart/form-data”

// Champs du formulaire

<form action="/Plat/Creer" enctype="multipart/form-
data"” method="post"></form>

4 N

Les helpers d’édition
I@Html.LabelFor-(model => model.DateCr'eation)_

<label for="DateCreation"» Date de création</label>

* LabelFor génére un ¢lement <label> et prend en compte I’annotation
DisplayNameFor

» EditorFor génére I’élément adéquat selon le type de la propriété et prend en
compte I’annotation DataType,

o Sila vue est liée a un modele EditorFor remplit le champ généré avec la
valeur adéquate

IQHtml.Editor-For'(model => model.DateCr'eation)_

@ <input type="date" name="DateCreation">

Les helpers de validation

* Html.ValidationSummary()

@Html.ValidationSummary()

Entrez votre nom

Entrez une adresse email valide

° Html.ValidationMessageFor ()

IQHtml.ValidationMessageFor(model => model.Email)-

Entrez une adresse email valide

* Les helpers de validation utilisent les annotations de validation
deéfinies dans le modele

* Dans un controleur la propriété ModelState.IsValid permet de
verifier si 'utilisateur a saisi des données valides.

-

Les vues partielles

Une vue partielle est un bloc de code que nous pouvons insérer

dans d’autres vues.
Par convention le nom d’une vue commence par un souligné & _»

Vues partielles fortement typees et vues partielles dynamiques:
Creez une vue partielle fortement typee si la vue utilise toujours le
meéme modele, et une vue partielle dynamique dans le cas contraire.

Utiliser une vue partielle

Html. Partial(_NomVuePartielle): passe le modele de la vue parente a

la vue partielle.

Html.Action(): permet de passer un modele different de celui de la

page parente a la vue partielle.

/

Les annotations avec EF Model First et
Database First

Nous allons ajouter des annotations a la classe Intervenant générée
automatiquement par l’Entity Framework:

namespace BdConferenceApp.Models
{
using System;
using System.Collections.Generic;

public partial class Intervenant
{
public int IntervenantID { get; set; }
public string Nom { get; set; }
public string AdresseEmail { get; set; }

Pour ajouter des annotations a la classe Intervenant, il faut creer
une classe partielle Intervenant et une classe qui doit contenir les
annotations souhaitces (IntervenantAnnotations) dans le méme

espace de noms que la classe partielle générée par I’EF.

Ensuite, il faut associer la classe IntervenantAnnotations a la classe

Intervenant a I’aide de ’annotation MetaDataType

using System;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
namespace BdConferenceApp.Models
{/* Classe de définition des métadonnées (annotations)
* pour Intervenant
*/
public class IntervenantAnnotations
{
[Required]
[DisplayName("Nom de 1'intervenant")]
public Object Nom { get; set; }

[DataType(DataType.EmailAddress)]
public Object AdresseEmail { get; set; }

/* Définir les métadonnées de la classe Intervenant
*/[MetadataType(typeof(IntervenantAnnotations))]
public partial class Intervenant { }

public class SessionMetaDonnees

{[Required]
[DataType(DataType.MultilineText)]
public Object Description { get; set; }

)

