
ASP.NET MVC

ASP.NET MVC

2

Controller

ModelView

Créer une application ASP.Net
 Créer un projet Application Web ASP.NET MVC 4 (ou 3)

3

Les contrôleurs

4

 Rôle
 Le contrôleur reçoit les requêtes du client
 Prépare le modèle de données pour la vue.
 Sélectionne et envoie la vue adéquate au client.

 Un contrôleur hérite de la classe Controller.

 Le nom de la classe du contrôleur doit se terminer par le
suffixe « Controller ».

Les Vues

5

 Une vue est un fichier template utilisé par le moteur
ASP.NET MVC pour générer dynamiquement la réponse
HTML

Atelier

6

1- Créer un projet Application web
ASP.NET MVC 4
2- Créer un contrôleur
(Exemple1Controller, Modèle: Contrôleur
MVC vide)

Un nouveau fichier nommé
Exemple1Controller.cs est créé dans
dossier « Controllers » qui contient
la classe Exemple1Controller

public class Exemple1Controller :
Controller

{//

// GET: /Exemple1/

public ActionResult Index()
{

return View();
}

Ajouter la méthode suivante dans le
contrôleur:

public string Message()
{

return
"<h1>Bonjour</h1>";

}

7

Modifier la méthode (action) comme suit:
public string Index()

{
return "<h1>Action par défaut</h1>";

}
Tester Le contrôleur Exemple1 dans le navigateur.

Contrôleur, l’action par défaut Index est
appelée Contrôleur Action

Mapping par défaut d’une URL ASP.NET MVC: /Contrôleur/Action/Paramètres

8

Ajouter les deux actions suivantes :

public string Message2(string id)
{

return "<h2>Bonjour " + id +
"</h2>";

}

public string Message3(string nom , int
nb)

{
return "<h2>Bonjour " + nom +

" " + nb + " fois</h2>";

}

9

3- créer une vue

 Ajouter un contrôleur nommé exemple2

 Cliquer sur l’action Index avec le bouton droit et sélectionner la commande « ajouter une
vue »

Dans le dossier Views, un nouveau sous
dossier qui porte le nom du contrôleur
(Exemple2) est créé.

Dans le dossier Exemple2, une vue qui
porte le nom de l’action Index (.cshtml) est
créée.

10

Ajouter le code suivant dans
la page Index.cshtml

<p>Vue associée à l'action
Index du contrôleur
Exemple2</p>.

Le contenu du dossier
shared est partagé par
toutes les vues

La page _Layout.cshtml est le modèle utilisé par toutes les
vues.

Supprimer le contenu « - Mon application ASP.NET MVC »
de la balise tiltle

Le contenu des vues est
affiché par
@RenderBody()

11

4- Passer des données du contrôleur vers la vue

Ajouter dans le contrôleur Exemple2 l’action suivante:

public ActionResult Message3(string
nom, int nb)

{

// ViewBag est un objet
dynamique permet de passer des données
à une vue

ViewBag.message = "Bonjour
" + nom;

ViewBag.nombre = nb;
return View();

}
 Ajouter une vue associé à l’action Message3

 Ajouter le code suivant, dans la vue nouvellement créée

@for (int i=0; i < ViewBag.nombre; i++) {

@ViewBag.message

}

Le modèle

12

Le modèle est constitué de classes POCO (Plain Old CLR Objects
Exemple:
public class Photo

{
//Le nom de l'identifiant doit être soit
//ID soit NomClasseID
public int PhotoID { get; set; }

public string Titre { get; set; }
public string Description { get; set; }
public DateTime DateCreation { get; set; }

public string Proprietaire { get; set; }
public byte[] Fichier { get; set; }

//Propriété de navigation
//virtual pour activer le chargement différé (Lazy loading)
public virtual ICollection<Commentaire> Commentaires { get; set; }

}

Les annotations

13

 Annotations d’affichage et d’édition
[DisplayName("Date de création")]

[DataType(DataType.Date)]

[DisplayFormat(DataFormatString="{0:dd/MM/y
y}",ApplyFormatInEditMode=true)]

public DateTime DateCreation { get;
set; }

 Annotations de validation

14

public class Personne
{

public int PersonnID { get; set; }

[Required(ErrorMessage=“Entrez un nom")]
public string Nom { get; set; }

[Range(15, 40)]
public int Age{ get; set; }

[Required]
[DataType(DataType.EmailAddress)]
public string AdresseEmail{ get; set; }

}

Ajouter le contexte Entity Framework

15

 Créer une classe qui hérite de DbContexte (System.Data.Entity)
public class PartagePhotoDB:DbContext

{
public DbSet<Photo> Photos { get;

set; }
public DbSet<Commentaire>

Commentaires { get; set; }
}

 Lors de la première exécution de l’application EF cherchera une
chaine de connexion nommée PhotoSharingDB pour créer
la base de données, s’il n’existe pas il génère une connexion
par défaut.

Contrôleurs

16

Les actions

17

 Une action est une méthode publique qui retourne un objet de
type ActionResult ou un type dérivé.

 Types dérivés de ActionResult
 ViewResult: pour retourner une vue.
 PartialViewResult: représente une vue partielle (une partie d’une

page html) qui peut être utilisée dans plusieurs vues de l’application.
 RedirectToRouteResult: redirige le navigateur vers une autre action
 RedirectResult:redirection vers une URL dans l’application ou une

URL externe.
 ContentResult: retourne des données au navigateur au format texte ,

XML, JSON

Le contrôleur Categories avec l’action
Index

18

public class CategoriesController : Controller
{

//Création du contexte de données
restoEntities db = new restoEntities();
//Action Index
public ActionResult Index()
{ /*Le contrôleur passe le modèle (categories) à

* la vue nommée Index.cshtml (nom de l'action),
stockée dans le dossier views/Categories.
View() retourne un ActionResult de type ViewResult

*/
return View(db.categories.ToList());
//On peut aussi fournir explicitement le nom de la

vue
return View("Index", db.categories.ToList());

}
}

L’action Details

19

//int? : type nullable (int + null)
public ActionResult Details(int? ID)
{

if (ID==null)
return HttpNotFound();

// Utiliser une requête LINQ
/* var cat = (from c in db.Categories

where c.ID == ID
select c).FirstOrDefault();*/

//Utilise la méthode Find qui en paramètre
//la valeur d'une clé primaire
var cat = db.Categories.Find(ID);

if (cat == null)
return HttpNotFound();

return View(cat);
}

L’action Creer

20

/* Par défaut [HttpGet] appelée lors de l’affichage du formulaire*/
public ActionResult Creer()

{
return View(new Categorie());

}

[HttpPost] /* appelée lors de l’envoi du formulaire (envoyé par méthode POST)*/
public ActionResult Creer(Categorie cat)
{// On doit tester la validité des données envoyées

if (ModelState.IsValid)
{

db.Categories.Add(cat);
db.SaveChanges();
/* RedirectToAction retourne un ActionResult
* det Type RedirectToRouteResult
*/
return RedirectToAction("Index");

}
return View(cat);

}

L’action Modifier

21

public ActionResult Modifier(int? ID)
{ if (ID==null)

/* HttpNotFound() retourne un
ActionResult de type HttpNotFoundResult

*/
return HttpNotFound();

var cat = db.Categories.Find(ID);
if (cat == null)

return HttpNotFound();
return View(cat);}

[HttpPost]
public ActionResult Modifier(Categorie
c)
{

if (ModelState.IsValid)
{/* Cette linge indique que c est un

objet (une entée)
* existante qui est dans l'état

modifié, l'état est
* défini par la constante

EntityState.Modified
* L'appel à SaveChanges

déclenchera dans ce cas un Update
*/

/* La méthode Entry (de la classe
DbContext) retourne, une entité

* de type DbEntityEntry, attachée
au contexte de données db et on

* modifie l'état de l'entité à
l'aide de sa propriété State.

*/
db.Entry(c).State =

EntityState.Modified;
db.SaveChanges();
return

RedirectToAction("Index");
}
return View(c);

}

L’action Supprimer

22

//Suppression
public ActionResult Supprimer(int? ID)
{

// Il faut ajouter les tests sur
null

return View(db.Categories.Find(ID));
}
/* L'attribut ActionName définit le nom
de l'action, ainsi l'action
* Supprimer est associée à la méthode
ConfirmerSuppression
*/
[HttpPost , ActionName("Supprimer")]
public ActionResult
ConfirmerSuppresion(Categorie cat)
{// Il faut ajouter les tests sur null

// Etape 1: recherche de l'entité
cat dans le contexte de données

Categorie categorie = (from cc in
db.Categories

where cc.ID == cat.ID

select cc).FirstOrDefault();
// Etape 2: suppression de l'entité
db.Categories.Remove(categorie);

//Ou bien nous pouvons aussi
remplacer les étapes 1 et 2 par:

//db.Entry(cat).State =
EntityState.Deleted;

//
db.SaveChanges();
return RedirectToAction("Index");

}

Remarque: Il ne faut oublier de mettre à
jour le nom des actions Creer, Modifier
et Supprimer dans la vue Index

Actions filles

23

 L’annotation [ChildActionOnly] permet de définir une action
fille qui retourne une partie du contenu d’une vue, une
action fille peut être appelée dans une vue par le helper
Html.Action()

Les vues

24

 Les moteurs de vues

 Syntaxe Razor

 Les Html Helpers
 Action
 Affichage
 Edition
 Validation

Les moteurs de vue Asp.Net MVC

25

 Razor:depuis la version Asp.Net MVC 3

 ASPX: moteur de vue par défaut pour les versions Asp.net
MVC 1 et 2

 NHaml: version .Net du moteur de vues Haml utilisé par
Ruby On Rails.

 Spark:moteur de vue utilisé aussi par le framework MonoRail
(un framework basé sur Asp.Net et inspiré par Ruby On
Rails).

Syntaxe Razor

26

 Le symbole @ différencie le code C# du code HTML dans une
vue.

 @@: affiche le symbole @
 @: définit une ligne de texte dans le code C#, pour plusieurs

lignes il faut utiliser <text> </text>
 @* commentaire razor *@
 Par défaut Razor encode les chaînes de caractères avant de les

envoyer au navigateur, par exemple si @Model.Categorie contient
"<p>Salade</p>", alors il remplace les caractères < et > par
‘<’ et ‘>’.

 Pour générer les chaînes sans encodage HTML, il faut utiliser
@Html.Raw(Model.Categorie)

Exemples

27

@* Commentaire Razor *@

Prix TTC : @(Model.Prix * 1.2)

@if (Model.Count > 15)
{

@foreach(var item in Model)

{
@item.Nom

}

}

Lier une vue au modèle

28

 Une collection d’entités
@model IEnumerable<app3.Models.Categorie>
@foreach (var item in Model) {

<div>
Nom: @item.libelle

</div>
}

 Une entité
 @model app3.Models.Categorie

 Libellé: @Model.libelle

Les Html Helpers
Actions

29

 @Html.ActionLink: génère un élément <a>

@Html.ActionLink("Afficher Détails", "Details", new {
id=1 })

Afficher Détails

 @Html.Action: génère un lien (uniquement la valeur de href dans
le cas de ActionLink)

@Html.Action("Details", new { id=1 })

Plats/Details/1

Affichage
 Html.DisplayNameFor(): affiche la légende définie par

l’annotation [DisplayName] dans le modèle si elle est définie,
sinon ce helper affiche le nom de l’attribut.

@Html.DisplayNameFor(model => model.DateCreation)

Date de création

@Html.DisplayFor(model => model.DateCreation)

25/11/2013
30

 Html.DisplayFor(): affiche la valeur de la propriété en
prenant en compte éventuellement les annotations définies dans
le modèle.

Le helper Html.BeginForm()

31

Html.BeginForm(): génère l’élément Html form, les attributs du
formulaire peuvent être passés en arguments du helper.

@using (Html.BeginForm()) {
/* Champs du formulaire */

}

<form action="/Categories/Creer" method="post"></form>

@using (Html.BeginForm("Creer", "Plat", FormMethod.Post,
new { enctype = "multipart/form‐data" }))
{

// Champs du formulaire
}

<form action="/Plat/Creer" enctype="multipart/form‐
data" method="post"></form>

Les helpers d’édition

32

 LabelFor génère un élément <label> et prend en compte l’annotation
DisplayNameFor

 EditorFor génère l’élément adéquat selon le type de la propriété et prend en
compte l’annotation DataType,

 Si la vue est liée à un modèle EditorFor remplit le champ généré avec la
valeur adéquate

@Html.LabelFor(model => model.DateCreation)

<label for="DateCreation"> Date de création</label>

@Html.EditorFor(model => model.DateCreation)

<input type="date" name="DateCreation">

Les helpers de validation

33

 Html.ValidationSummary()

 Html.ValidationMessageFor ()

 Les helpers de validation utilisent les annotations de validation
définies dans le modèle

 Dans un contrôleur la propriété ModelState.IsValid permet de
vérifier si l’utilisateur a saisi des données valides.

@Html.ValidationSummary()

@Html.ValidationMessageFor(model => model.Email)

Entrez votre nom
Entrez une adresse email valide

Entrez une adresse email valide

Les vues partielles

34

 Une vue partielle est un bloc de code que nous pouvons insérer
dans d’autres vues.

 Par convention le nom d’une vue commence par un souligné « _ »

 Vues partielles fortement typées et vues partielles dynamiques:
 Créez une vue partielle fortement typée si la vue utilise toujours le

même modèle, et une vue partielle dynamique dans le cas contraire.

 Utiliser une vue partielle
 Html.Partial(_NomVuePartielle): passe le modèle de la vue parente à

la vue partielle.
 Html.Action(): permet de passer un modèle différent de celui de la

page parente à la vue partielle.

Les annotations avec EF Model First et
Database First

35

namespace BdConferenceApp.Models
{

using System;
using System.Collections.Generic;

public partial class Intervenant
{

public int IntervenantID { get; set; }
public string Nom { get; set; }
public string AdresseEmail { get; set; }

}
}

Nous allons ajouter des annotations à la classe Intervenant générée
automatiquement par l’Entity Framework:

36

 Pour ajouter des annotations à la classe Intervenant, il faut créer
une classe partielle Intervenant et une classe qui doit contenir les
annotations souhaitées (IntervenantAnnotations) dans le même
espace de noms que la classe partielle générée par l’EF.

 Ensuite, il faut associer la classe IntervenantAnnotations à la classe
Intervenant à l’aide de l’annotation MetaDataType

37

using System;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
namespace BdConferenceApp.Models
{/* Classe de définition des métadonnées (annotations)

* pour Intervenant
*/

public class IntervenantAnnotations
{

[Required]
[DisplayName("Nom de l'intervenant")]
public Object Nom { get; set; }

[DataType(DataType.EmailAddress)]
public Object AdresseEmail { get; set; }

}

/* Définir les métadonnées de la classe Intervenant
*/[MetadataType(typeof(IntervenantAnnotations))]

public partial class Intervenant { }

public class SessionMetaDonnees
{[Required]

[DataType(DataType.MultilineText)]
public Object Description { get; set; }

}}

